SUPER BUGS! HOW TO TREAT THE WORST OF THE WORST INFECTIOUS PATHOGENS!

Vicky Shah, PharmD, BCPS Associate Professor of Clinical Sciences Chair of Service and Clinical Site Relationships Roosevelt University College of Science, Health and Pharmacy

<u>Disclosures</u>

No financial or other conflicts to disclose

Learning Objectives – Pharmacists

Discuss the importance of appropriate antibiotic use to prevent multi-drug resistant pathogens

Review culture & sensitivity reports

Describe appropriate treatment regimens for $\mathsf{KPC},\mathsf{CRE},\mathsf{ESBL},\mathsf{etc}.$

Identify the coverage spectrum of newer antibiotic agents which can be utilized for multi-drug resistant pathogens

Learning Objectives – Technicians

Discuss the importance of appropriate antibiotic use to prevent multi-drug resistant pathogens

Recognize new antibiotic agents being used

1

Pre-Test Question 1

Which of the following combinations is the appropriate treatment for NMD-1 Carbapenemase-Producing Enterobacteriaceae? SELECT ALL THAT APPLY

- a. Piperacillin/Tazobactam
- b.Tigecycline + Amikacin + Colistin
- c. Amoxicillin/Clavulanic Acid
- d.Vancomycin
- e. Ceftolozane/Tazobactam

5

Pre-Test Question 3

Which of the following is considered first line treatment for hospital acquired MRSA infections? a.Daptomycin

b.Linezolid

- c.Clindamycin
- d.Vancomycin

Pre-Test Question 2

Which of the following is the first line treatment for ESBL E. Coli infections?

- a.Carbapenems
- b.Fosfomycin
- c.Piperacillin/Tazobactam
- d.Amoxicillin/Clavulanic Acid

6

Pre-Test Question 4

Which of the following medications can be used for clostridium difficile infections? a.IV Vancomycin

- a.iv vancomychi
- b.Oral Vancomycin
- c.IV Zosyn
- d.Oral Augmentin

HOW CAN INFECTIONS BE TRANSMITTED FROM PERSON TO PERSON?

10

WHAT ARE SOME THINGS THAT CAN BE DONE TO PREVENT THE SPREAD OF INFECTION?

• Determined by CLSI or EUCAST based on in vitro testing and physiologically achievable concentrations at usual doses. Granan P5, Meregus MA. Microbiology/aboratory tests. Ir. Betts PF, Chapman SW, Pen RL, eds. A Practical Approach to Infectious Diseases. Philadelphia, Pt Lupincont Williams & Wilkins, 2003393–356.

Susceptibility Report				
S = susceptible	Reasonable to expect efficacy			
l = intermediate	 Activity likely insufficient In some cases may have some efficacy at maximum doses "Susceptible-dose dependent" (S-DD) 			
R = resistant	 No clinically useful activity In multidrug resistant organisms, may still have a role for synergy 			
Graman PS, Menegus MA. Microbiology laboratory tests. In: Betts RF, Chapman SW, Penn RL, eds. A Practical Approach to Infectious Diseases. Philadelphia, PA: Lippincott Williams & Wilkins, 2003;939–956. 21				

		<u>C</u>	ultur	<u>es</u>			
	Examples of Antibiotic Susceptibility Breakpoints						
	Organism Antibiotics	Susceptible	Intermediate	Resistant	**********ISOLATION	PRECAUTIONS F	THERE RECOMMENDED*********************************
	E. coli				Amikacin	<=2	s
	Cefepime	$\leq 8 \text{ mca/ml}$	16 mca/ml	$\geq 32 \text{ mca/ml}$	Ampicillin	>=32	R
(Levofloxacin	$\leq 2 \mod/m$	4 mcn/ml	> 8 mcn/m	AmpSulbactan	4	s
	Trimotheonim/	< 2/20 mco/ml		> A/76 mon/ml	Aztreonam	4	8
000	sultamethorazole	= 2/30 mogrini		= 4/70 mog/m	Cefazolin	2=64	R
	Strantococcur				Ceftriaxone 2 Ciprofloxacin >=4 Ertapenen <=0.5	8	
	nneumoniae					R	
	Cafanima	< 0.5 mcn/ml	1 mca/ml	> 2 mca/ml		s	
With antibacterials 1, 3, 6 & 7, the bacteria show	(maninnitis)	_r o.o mografi	1 magnin	to 2 mogram	Gentamicin	<=1	s
a sensitivity to an antibiotic. The bacteria are	(Non-meningeal)	< 1 mcn/ml	2 mcn/ml	> 4 mco/m	Meropenem	<=0.25	8
resistant to medications 2, 4, 5, 8 & 9.	Levofloyacin	< 2 mcn/ml	4 mcn/ml	> 8 mcn/ml	PiperTazobactan	<=16 <=4	8
	Trimotheorim/	< 0.5/0.5 moo/ml	1 2/10 20 mon/ml	> A/76 mon/ml	Tobranycin	<=1	-
	sulfamethoyazola	⇒ 0.5/5.5 mog/mi	1-2/18-30 mog/mi	< wronicynii	TrimethSulfa	<=20	s
Graman PS, Menegus MA. Micro	obiology laboratory	tests. In: Betts RF Lippincott V	, Chapman SW, P Villiams & Wilkins,	enn RL, eds. A / 2003:929-956.	Practical Approach to Infect	tious Diseases. Ph	niladelphia, PA: 22

<u>Assessment</u>				
Drug	МІС	Breakpoint	Interpretation	
Amikacin	2	4		
Ampicillin	32	16		
Aztreonam	4	2		

Assessment					
Drug	МІС	Breakpoint	Interpretation		
Amikacin	2	4	S		
Ampicillin	32	16	R		
Aztreonam	4	2	R		

ESKAPE/ESCAPE			
E	Enterococcus faecium		
S	Staphylococcus aureus		
K or C	Klebsiella pneumoniae Clostridium difficile		
А	Acinetobacter spp		
Р	Pseudomonas aeruginosa		
E	Enterobacter spp Enterbacteriaceae		

	Threat	Change in Rates or Number of Infections***				
	Illiedt	2020 vs. 2019 2021 vs. 2020		2022 vs. 2021	2022 vs. 2019	
	Hospital-onset CRE	Increase	Increase	Stable	Increase	
N U U U U U	Hospital-onset Carbapenem- resistant <i>Acinetobacter</i>	Stable	Stable	Stable	Increase**	
5	Clinical Cases of <i>C. auris</i>	Increase	Increase	Increase	Increase	
	Hospital-onset MRSA	Increase	Stable	Decrease	Stable	
200	Hospital-onset VRE	Increase	Increase	Stable	Increase	
DERIV	Hospital-onset ESBL- producing Enterobacterales	Increase	Stable	Stable	Increase	
Ĩ	Hospital-onset MDR Pseudomonas aeruginosa	Increase	Increase	Stable	Increase	

CLOSE YOUR EYES

30

Peggy Lillis

One of the leading causes of morbidity and mortality in the hospital

Resistance is not an issue but overuse of antibiotics has led to an increase incidence of Cdiff infections

Abou Chakra CN, McGeer A, Labbe AC, et al. Factors associated with complications of Clostridium difficile infection in a multicenter prospective cohort. Clin Infect Dis. 2015;61(3):1781-1781

WHAT ANTIBIOTIC HAS THE HIGHEST RISK FOR CAUSING CDFIFF INFECTIONS?

Antibiotic Related Risk				
High Risk	Medium Risk	Low Risk		
Cephalosporins	Macrolides	Aminoglycosides		
Clindamycin	Tetracyclines	Metronidazole		
Ampicillin/Amoxicillin		Anti-pseudomonal Penicillin		
Fluoroquinolones		Rifampin		
		Vancomycin		
Abou Chakra CN, McGeer A, Labbe AC, et al. Factors	Abou Chakra CN, McGeer A, Labbe AC, et al. Factors associated with complications of Clostridium difficile infection in a multicenter prospective cohort. Clin Infect Dis. 2015;63(3):3781-3788.			

34

Kelly CR, Fischer M, Allegretti JR, et al. ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. Am J Gastroenterol. 2013;116(6):1124-1147. doi:10.14390/ajg.cocoocoocooco2178 35

	Treatment
	Initial CDI Episode:
	Preferred: Fidaxomicin 200 mg BID x 10 days Alternative: PO Vancomycin 125 mg QID x 10 days If above unavailable (non-severe cases): Metronidazole 500 mg TID x 10-14 days
	First Recurrence:
	Preferred: Fidaxomicin 200 mg BID x 10 days or BID x 5 days then QOD x 20 days Alternative: PO Vancomycin in tapered/pulsed regimen
	Fulminant CDI:
	Vancomycin 500 mg QID orally or NG tube Consider rectal vancomycin if lieus is present IV metronidazole 500 mg q8h with vancomycin
	Multiple Recurrences:
	Fidaxomicin (standard or extended-pulsed) PO Vancomycin tapered and pulsed regimen PO Vancomycin x 10 days followed by rfaximin Fecal Microbia Transplantation (FMT) Adjunctive: Bezlotoxumab IV once discontinued effective January 31, 2025
Kelly CR,	Ficher M, Allegretti JR, et al. ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostificides difficile Infections. Am J Gestmenterol. 2022;136(5):124-1147. doi:so.14303/big.000000000000000000000000000000000000

Treatment Resistance/Recurrence

Bezlotoxumab (Monoclonal Antibody to Toxin B):

Reduces recurrence in high-risk patients

Use in patients with prior CDI episode in last 6 months

FMT (Fecal Microbiota Transplantation):

• For multiple CDI recurrences after standard treatments fail

• FDA warning: Risk of transmission of pathogens

Rifaximin:

Used after vancomycin for 20 days to prevent recurrence

• Limited data, but promising in some recurrent CDI cases

Kelly CR, Fischer M, Allegretti JR, et al. ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. Am J Gastroenterol. 2021;116(6):1124-1147. doi:10.143

37

Klebsiella-Producing Carbapenemases (KPC)

Inhibit all beta-lactams

New Delhi Metallo-Beta Lactamases (NMD-1)

Inhibit all beta-lactams

• Susceptible to Aztreonam

Verona Integron Encoded Metallobetalacamase (VIM)

Inhibit all beta-lactams

Oxacillin Hydrolyzing (OXA)

Inhibit all beta-lactams but weak inhibition against carbapenems

Humphries RM, Yang S, Hemarajata P, et al. First report of ceftazidime-avbactam resistance in a KPC-3-expressing Klebsiella gneumoniae isolate. Antimicrob Agents Chemother. 2015;59(10):6605-6607. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK-a molecular, biological, and epidemiological study. Langet Infect Dis. 2010;10(9):597-602.

42

Carbapenemase-Producing Enterobacteriaceae Treatments

Tigecycline + Polymyxins + Aminoglycosides

• Tigecycline has limited efficacy and numerous adverse effects

Ceftolozane-Tazobactam (Zerbaxa)

Ceftazidime-Avibactam (Avycaz)

No activity against NDM-1 and VIM

Imipenem/Cilastatin + Relebactam (Recarbrio)

Humphries RM, Yang S, Hemanjata P, et al. First report of certazidime-avbactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;05(10):6605;6607. Kumansamy KK, Toleman MA, Waish TR, et al. Emergence of a new antibiotic resistance mechanismi inidia, Paistana, and the UK-a molecular, biological, and epidemiological study. *Lancet Infect DB*: 2010;16(1):570-501.

Neisseria Gonorrhoeae – Treatment

Preferred Treatment:

- Ceftriaxone 500mg IM x 1 PLUS doxycycline 100mg PO daily x 7 days (if Chlamydia trachomatis infection is not excluded)
 - In patients ≥150 kg, ceftriaxone dose should be 1 gram

Alternative Treatments (FYI):

• Cefixime 800mg PO x 1

- Gentamicin 240mg IM plus 2 grams PO azithromycin
- Fluoroquinolones no longer recommended due to resistance

St. Cyr S, Barbee L, Workowski KA, et al. Update to CDC's Treatment Guidelines for Gonococcal Infection, 2020. MMWR Morb Morbal Wkly Rep 2020;69:1911–1916. 48

Extended Spectrum Beta-Lactamase (ESBL)

Nearly 900 different β-lactamases have been found (penicillinases, cephalosporinases, etc.)

Some β -lactam antibiotics are resistant to some β -lactamases, but sensitive to others

- Staphylococcus aureus, Haemophilus influenza, and Escherichia coli possess β-lactamases that prefer **penicillins**, but not **cephalosporins**
- Psuedomonas aeruginosa and Enterobacter species destroy penicillins and cephalosporins
- Penicillinases and cephalosporinases do not destroy carbapenems, but carbapenemases and metallo- β -lactamases exist that do destroy carbapenems

Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2020/

49

Hospital Acquired

- Vancomycin
- Daptomycin
- Linezolid/Tedizolid
- Ceftaroline
- Telavancin
- Dalbavancin/Oritavancin
- Tigecycline

61

Quinupristin/Dalfopristin

Community Acquired

- Sulfamethoxazole/Trimethoprim
- Doxycycline/Minocycline
- Clindamycin
- Linezolid/Tedizolid
- Moxifloxacin

Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/. Accessed January 12, 2011

Post-Test Question 2

Which of the following is the first line treatment for ESBL E. Coli infections? a.Carbapenems b.Fosfomycin c.Piperacillin/Tazobactam

d.Amoxicillin/Clavulanic Acid

Post-Test Question 3 Which of the following is considered first line treatment for hospital acquired MRSA infections? a.Daptomycin b.Linezolid c.Clindamycin d.Vancomycin

68

Post-Test Question 4

Which of the following medications can be used for clostridium difficile infections? a.IV Vancomycin b.Oral Vancomycin

c.IV Zosyn

d.Oral Augmentin

