
Take it to Heart with the QT:
A Prolonged
Understanding of QTc Management

Sally Falahat, PharmD, MPH, BCPS Internal Medicine Clinical Specialist Clinical Assistant Professor UIC Retzky College of Pharmacy

Conflicts of Interest

I have no conflicts of interest to disclose

Learning Objectives

Describe the pathophysiology of QT interval prolongation along with associated risk factors

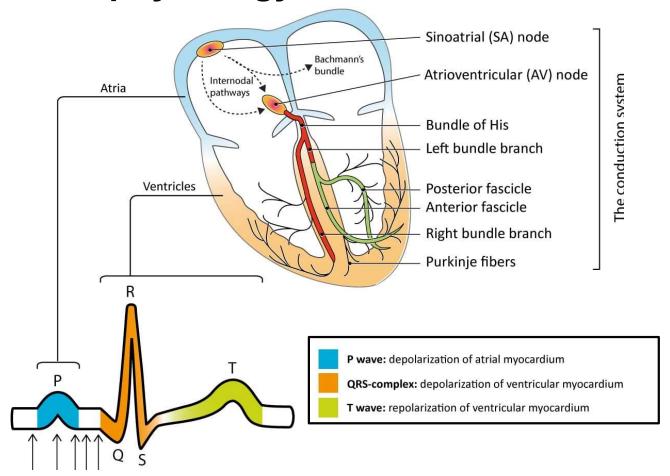
Review available primary literature for proper assessment and calculation of the QT interval

Discuss various strategies for mitigation risk factors with QT prolongation to provide safe and effective patient care

Evaluate resources for evidence-based decision making in the setting of a prolonged QT interval

Patient Case

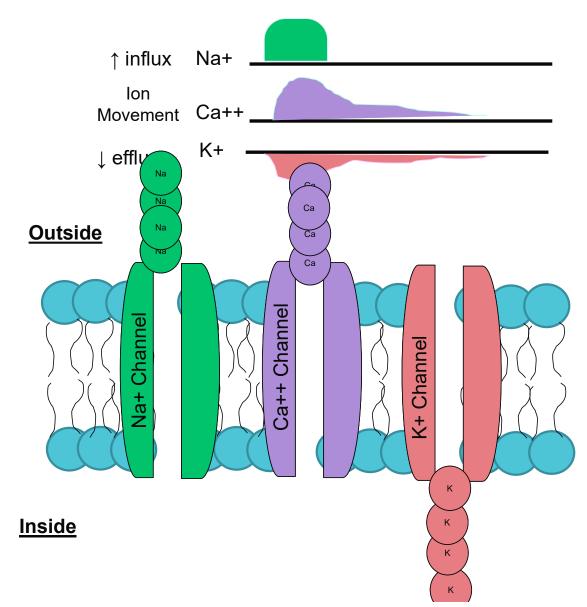
CF is a 52 y/o male with a PMH of HTN, HLD and T2DM presents to the ED with 1 week history of SOB, nausea/vomiting, and fevers. Findings from the CXR reveal a possible community acquired pneumonia. Medical provider opts to start patient on azithromycin, ceftriaxone, and IV ondansetron PRN.

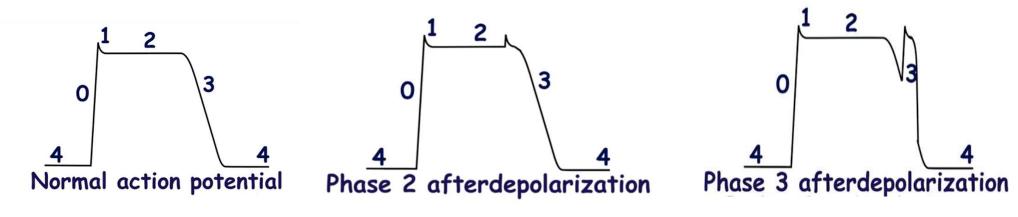

Drug-Drug: **Azithromycin** and **Ondansetron**The concurrent use of **azithromycin** and other agents that prolong the QT interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes

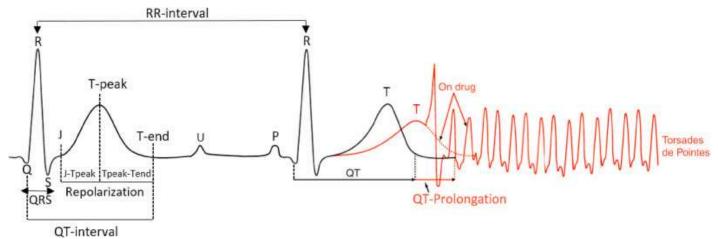
Serum Potassium	3.4 mEq/L
Serum Magnesium	2.0 mg/dL
Serum Calcium	9.2 mg/dL

EKG Findings:


Ventricular Rate	106 BPM
QT Interval	390 msec
QTc	528 msec
QRS	118 msec


Cardiac Electrophysiology


Al-Khatib SM, et al. *JAMA*. 2003;289(16):2120-2127. Image from: https://ecgwaves.com/topic/introduction-electrocardiography-ecg-book/


Cardiac Electrophysiology

Pathophysiology: Early Afterdepolarizations

Incidence of TdP

Torsades de Pointes (TdP) Incidence		
General Population	Estimated 2.5-4.5 per million per year, but may vary between populations	
Intensive/Progressive Care	0.07% of all patients over two-month period 6% of cardiac arrests over two-month period	
>90% of patients with TdP have ≥1 identifiable risk factor		

Risk Factors for QTc Prolongation

Cardiac

- Congenital Long QT syndrome
- History of QTc prolongation
- Bradycardia
- Ischemic heart disease
- Myocarditis
- Left ventricular hypertrophy
- Low ejection fraction

Medical Conditions

- State of shock
- Acute infection
- Systemic illness
- Starvation
- Anorexia nervosa
- Renal disease

Prolongation

Antagonists

Metabolic

- Hypokalemia
- Hypomagnesemia
- Hypocalcemia

Antiarrhythmics

Others

- Female sex
- People of extreme age (children and elderly)

Al-Khatib SM, et al. JAMA. 2003;289(16):2120-2127.

QTc Common Cutoffs

Established Cutoffs for QTc Prolongation

QTc Risk Interpretation	Adult Men (msec)	Adult Women (msec)
Normal	≤ 430	≤ 450
Borderline	431-450	451-470
Prolonged	> 450	> 470

Absolute QTc Prolongation ≥500 msec

Change from Baseline QTc Prolongation ≥60 msec

Does not apply to patients with ventricular conduction abnormalities (i.e bundle branch blocks and ventricular pacing)

Established Cutoffs

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Risk Stratification in the Long-QT Syndrome

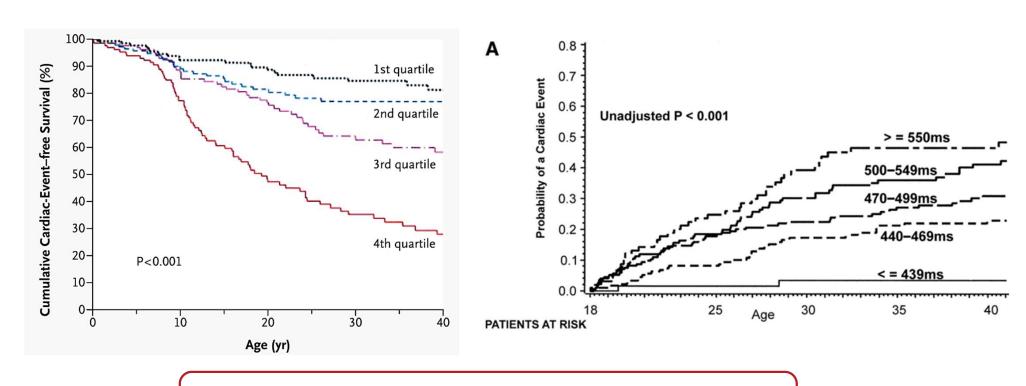
Silvia G. Priori, M.D., Ph.D., Peter J. Schwartz, M.D.,
Carlo Napolitano, M.D., Ph.D., Raffaella Bloise, M.D., Elena Ronchetti, Ph.D.,
Massimiliano Grillo, M.D., Alessandro Vicentini, M.D., Carla Spazzolini, M.V.,
Janni Nastoli, B.S., Georgia Bottelli, B.S., Roberta Folli, B.S.,
and Donata Cappelletti, B.S.

Population

 Congenital long QT syndrome in 647 patients from Italy (most were families)

Long QT Syndrome in Adults

Houston, Texas; and Salt Lake City, Utah


Andrew J. Sauer, BS,* Arthur J. Moss, MD,* Scott McNitt, MS,* Derick R. Peterson, PhD,† Wojciech Zareba, MD, PhD,* Jennifer L. Robinson, MS,* Ming Qi, PhD,‡ Ilan Goldenberg, MD,* Jenny B. Hobbs, BA,* Michael J. Ackerman, MD, PhD,\$ Jesaia Benhorin, MD,|| W. Jackson Hall, PhD,† Elizabeth S. Kaufman, MD,¶ Emanuela H. Locati, MD, PhD,# Carlo Napolitano, MD,** Silvia G. Priori, MD, PhD,** Peter J. Schwartz, MD,†† Jeffrey A. Towbin, MD,‡‡ G. Michael Vincent, MD,\$\$ Li Zhang, MD\$\$ Rochester, New York; Rochester, Minnesota; Jerusalem, Israel; Cleveland, Ohio; Perugia and Pavia, Italy;

Population

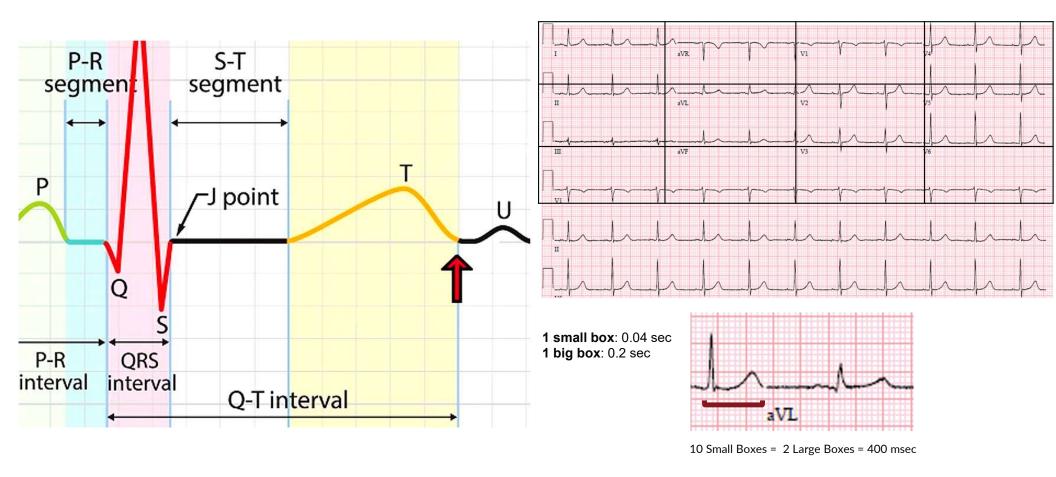
 812 patients with congenital long QT syndrome from International Long-QT Syndrome Registry

Priori SG, et al. *N Engl J Med*. 2003;348(19):1866-1874. Sauer AJ, et al. *JACC*. 2007;49(3):329-337.

Established Cutoffs Cont'd

A QTc > 500 msec, using Bazett's formula, was associated with a 2-3x fold higher risk for LQTS-related events in patients with congenital LQTS

Priori SG, et al. *N Engl J Med*. 2003;348(19):1866-1874. Sauer AJ, et al. *JACC*. 2007;49(3):329-337.


Downfall of Cutoff Selection

Cutoffs largely based on QTc Bazett Most data is stratified from patients with congenital long QT syndrome

No absolute correlations of prolonged QTc's and risks for TdP Use of different QT correction formulas in pharmaceutical industries

Appropriate Measurement of a QT Interval

Manual QT Interval Measurement

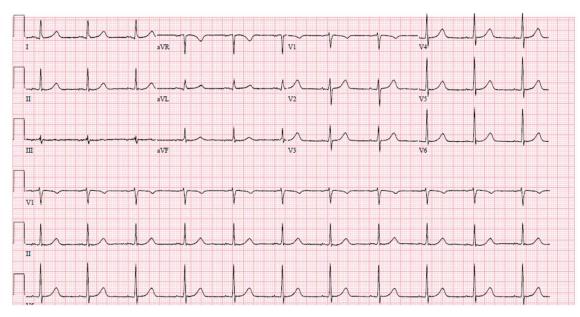
Automated QT Interval Measurement

 Vent. rate
 65 BPM

 PR interval
 144 ms

 QRS duration
 82 ms

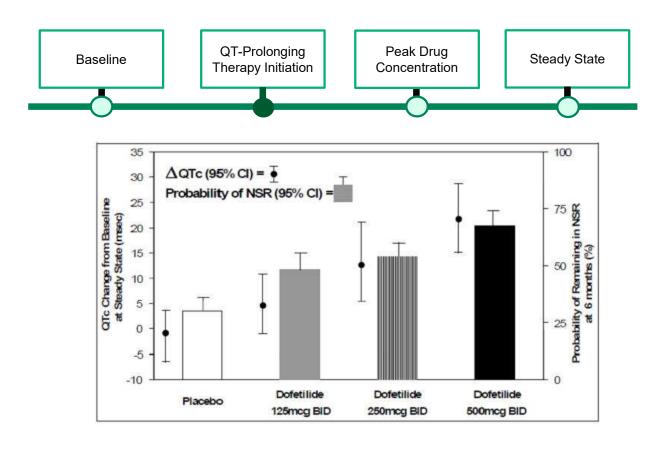
 QT/QTc
 440/457 ms


 P-R-T axes
 -8 32 26

Sinus rhythm Normal ECG

Automated calculations are less reliable in the setting of true QT prolongation and arrhythmias

Studies have shown automated algorithms to be unreliable ~50% of the time when assessing for QT prolongation


Vent. rate has decreased BY 77 BPM QRS duration has decreased

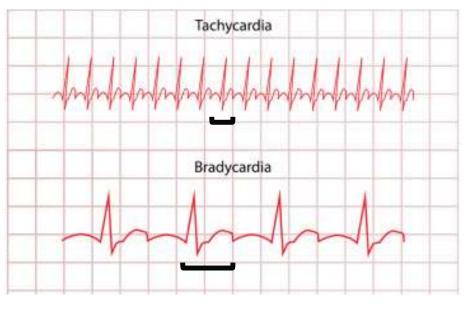
Guideline Recommendations for Best Practices in QT Measurement

AHA/ACCF/HRS recommend utilizing an experienced EKG evaluator overread when an automated QT measurement is included The automated diagnostic statements may be able to expedite the interpretation for the EKG overreader, but should be avoided for clinical decision making

Timing of QT Interval Measurement

QT prolongation is generally a concentration-dependent phenomenon

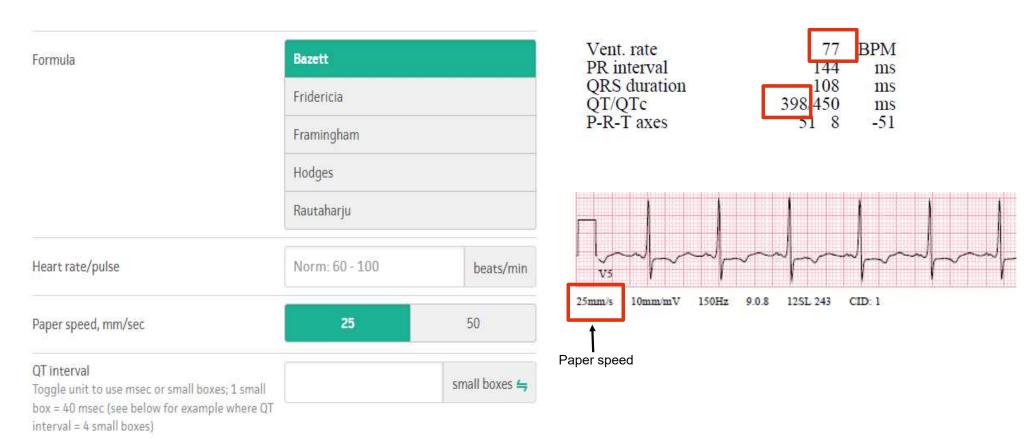
Dofetilide [package insert]. New York, NY. Pfizer, inc. 2014


Summary of QTc Measurement

An experienced EKG evaluator overread is crucial for appropriate QTc analysis

Pharmacokinetic profile of medications should be considered for optimal EKG measurement

Appropriate Correction of a QT Interval


QT Interval Correction

$$Heart Rate(BPM) = \frac{60}{RR Interval (sec)}$$

QTc Bazett	$rac{QT}{\sqrt{RR}}$
QTc Fridericia	$\frac{QT}{\sqrt[3]{RR}}$
QTc Framingham	QT + 0.154 (1 - RR)
QTc Hodges	QT + 1.75 (HR - 60)
QTc Rautaharju	$\frac{QT \times (120 + HR)}{180}$

MD Calc QTc Calculation

QTc Variability

Name	Formula	QTC	CF's EKG Findings
QTc Bazett	$rac{QT}{\sqrt{RR}}$	528	<u>Ventricular Rate</u> 106 BPM
QTc Fridericia	$\frac{QT}{\sqrt[3]{RR}}$	477	QT Interval
QTc Framingham	QT + 0.154 (1 - RR)	460	390 msec <u>QTc</u>
QTc Hodges	QT + 1.75 (HR - 60)	478	528 msec
QTc Rautaharju	$\frac{QT \times (120 + HR)}{180}$	498	

Which formula should be used for QTc calculation?

Primary Literature

Which QT Correction Formula to Use for QT Monitoring?

DESIGN

Retrospective, single-center evaluation of all EKGs taken over a 2-month period at a Belgian hospital Included 6609 hospitalized patients

QT correction performed using Bazett, Fridericia, Framingham, Hodges, and Rautaharju formulas.

Inclusion

HR<90 QRS < 120

Exclusion

Poor quality EKGs, including missing leads, excessive noise All but first EKG for each patient excluded

OUTCOMES

Using a multivariate cox regression analysis, Framingham (hazard ratio [HR], 7.31; 95% CI, 4.10–13.05) and Fridericia (HR, 5.95; 95% CI, 3.34–10.60) were found to be better predictors of 30-day all-cause mortality than Bazett (HR, 4.49; 95% CI, 2.31–8.74)

- Cardiac mortality: longer QRS duration = independent predictor of mortality
- Noncardiac mortality: shorter QRS duration= independent predictor of mortality

Bazett overestimated patients with potential dangerous QTc prolongation, even in NSR

LIMITATIONS

EMR review, concomitant medications not assessed, only patients with normal sinus rhythm with a narrow QRS and HR <90 BPM were included

Vandenberk B, et al. JAHA. 2016 5(6):e003264

Rautaharju Formula

Formula: $QT \times (120 + HR)$ 180

validated in a study with >50,000 patients in 2014

Demonstrated higher sensitivity and specificity for TdP than Bazett formula across broad range of heart rates

Table 2. Selected cut-off point, sensitivity, specificity, and accuracy from each formula.

To the	Cut-off point (ms)	Sensitivity (%) [95% CI]	Specificity (%) [95% CI]	Accuracy (%)
QTcRTH	477	91.30 [86.89–94.61]	87.33 [82.96–90.92]	89.08
QT nomogram	-	91.30 [86.89–94.61]	87.33 [82.96–90.92]	89.08
QTcDMT	475	91.30 [86.89–94.61]	85.96 [81.44-89.73]	88.31
QTcFRD	473	89.13 [84.37-92.84]	88.70 [84.50-92.09]	88.89
QTcBZT	490	88.26 [83.38–92.12]	85.96 [81.44–89.73]	86.97

Conclusion:

QTc Bazett

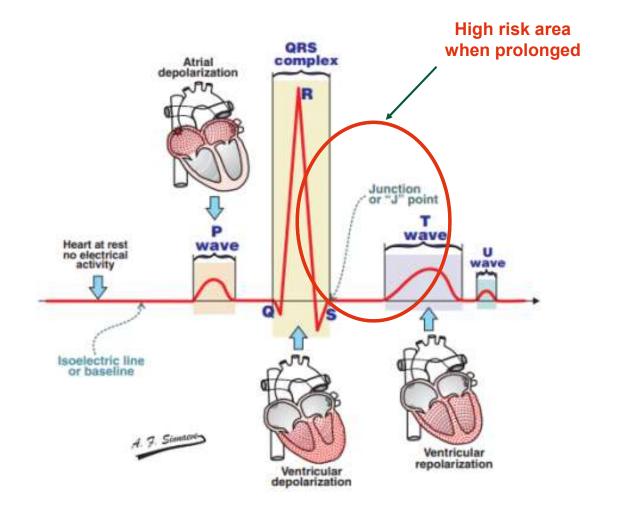
Over exaggerated the amount of patients with true QTc prolongation regardless of patient's heart rate

Clinical Results

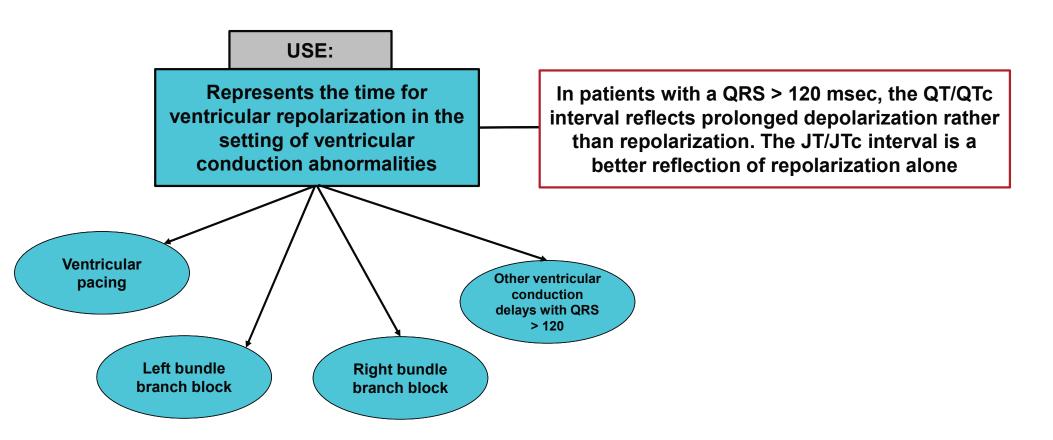
Withholding critical first choice medications

Guideline Recommendations

AHA/ACCF/HRS recommend use of linear regression functions instead of Bazett's formula for QT rate correction

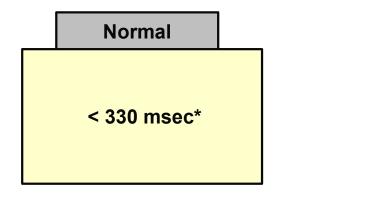

What happens if the patient has ventricular conduction abnormalities (i.e bundle branch blocks and ventricular pacing)?

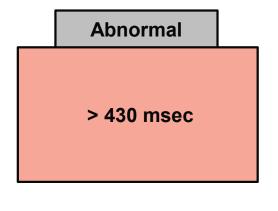
Electrical Activity Conduction


REMINDER

Normal QRS Value:

80-100 msec




JT Interval

Duan J, et al. *Oncotarget*. 2018 May 22;9(39):25738-25749. Zareba W, et al. *Journal of Electrocardiology*. 2017;50(6):748-751. Zulqarnain MA, et al. *Am J Cardiol*. 2015;116(1):74-78.

JT Interval Calculation

Calculation: JTc = QTc - QRS

^{*}based on sotalolol package insert

Patient Case

CF is a 52 y/o male with a PMH of HTN, HLD,T2DM, and **a left bundle branch block** presents to the ED with 1 week history of SOB, nausea/vomiting, and fevers. Findings from the CXR reveal a possible community acquired pneumonia. MD opts to start patient on azithromycin, ceftriaxone, and IV ondansetron PRN.

Drug-Drug: **Azithromycin** and **Ondansetron**The concurrent use of **azithromycin** and other agents that prolong the QT interval may result in potentially life-threatening cardiac arrhythmias, including torsades de pointes

Serum Potassium	3.2 mEq/L
Serum Magnesium	1.4 mg/dL
Serum Calcium	9.8 mg/dL

EKG Findings:

Ventricular Rate	86 BPM
QT Interval	470 msec
QTc	547 msec
QRS	157 msec

JT Interval = 390 msec; not prolonged

Mitigating Risks of QTc Prolongation


Mitigating QT Prolongation Risk

Modifiable Risk Factors

QT Prolonging Medications

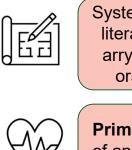
Electrolyte Abnormalities

QT-Prolonging Medications

Drugs from US Most Prescribed Drugs List of 2020		
Known Risk of TdP	Possible Risk of TdP	
Sotalol	Tizanidine	
Flecainide	Lithium	
Citalopram	Famotidine	
Escitalopram	Mirabegron	
Ondansetron	Risperidone	
Fluconazole	Aripiprazole	
Azithromycin	Olanzapine	
Haloperidol	Quetiapine	
Levofloxacin		
Dofetilide		

Drew BJ, et al. J Am Coll Cardiol. 2010;55(9):934-947.

Question:


A patient has a prolonged QTc (>500 msec) on EKG and is feeling nauseous. Team wants to start PO ondansetron (Zofran) 8 mg TID scheduled. What would you do?

Okay to verify

Ask team to switch agent

Ondansetron and QTc Prolongation

Ondansetron and the risk of cardiac arrhythmias: a systematic review and post marketing analysis

Systematic review of published literature identifying reported arrythmias following a single oral dose of ondansetron

Total of 18 reports describing 21 cases were identified

Primary outcome: no reports

identified a single occurrence

of an arrythmia

Kinetics

IV 32 mg dose:

17 to 20 msec QTc prolongation

• IV 8 mg dose:

5.8 msec QTc prolongation

Oral:

no documented reports

Time to peak concentration after oral:

2.3 hours

Time to peak concentration after IV:
 5 minutes

Primary outcome: occurrence of an arrythmia within 24 hours of a single oral administration

Secondary outcome:

identifying all cases associating ondansetron administration to an arrythmia

Secondary outcome: 80% included IV use, 3% involved long term oral use in patient with arrythmia risk factors

In June 2012, the FDA issues an update associating the risk of QT prolongation with the administration of a 32-mg intravenous dose

Freedman SB, et al. Ann Emerg Med. 2014;64(1):19-25.e6

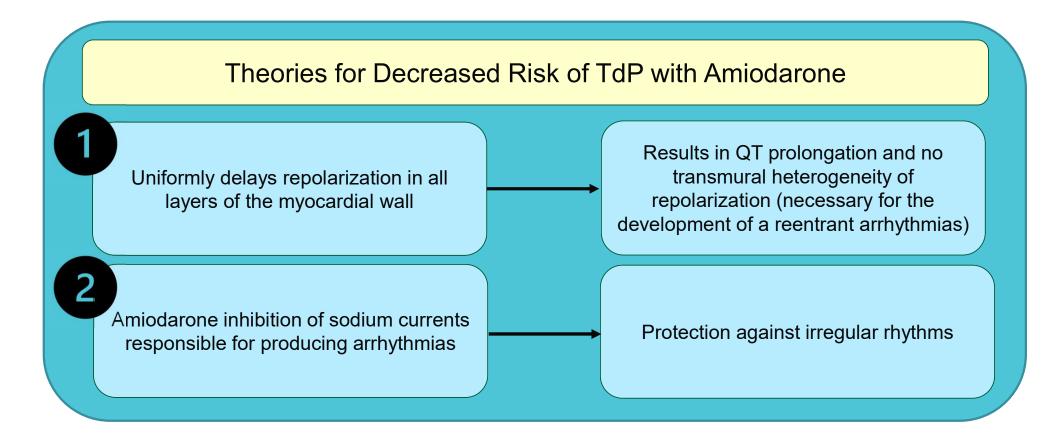
Question:

A patient has a prolonged QTc (>500 msec) on EKG and is in afib with RVR. Patient takes amiodarone at home and primary team wants to restart inpatient.

What would you do?

Okay to verify

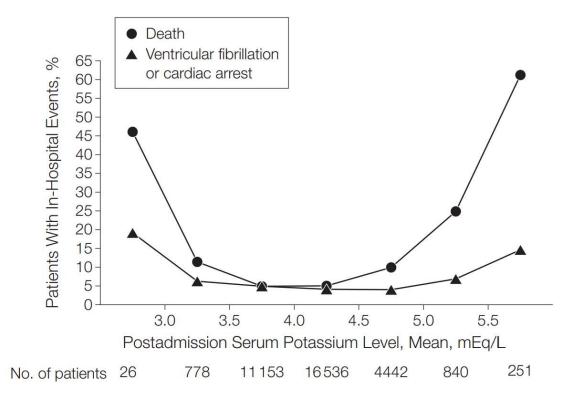
Ask team to switch/hold agent


Amiodarone and QTc Prolongation

Amiodarone-associated Proarrhythmic Effects:
A Review with Special Reference to Torsade de Pointes Tachycardia

DESIGN RESULTS Systematic review of published A total of 65 case reports, 17 literature identifying uncontrolled studies, and 7 amiodarone-associated controlled studies were proarrhythmic events identified Patients with highest risks: 62% women Primary objective: occurrence 50% hypokalemia TdP incidence overall of 0.7% of torsade de pointes during 20% concurrent (17 out of 2878 patients) amiodarone administration antiarrhythmic drugs with QT prolonging risks 70% CAD and history of MI **Secondary objective**: effects 000 31 patients with previous of amiodarone in patients with exposure to drug-mediated previously documented drugtorsade de pointes were induced torsade de pointes. exposed to amiodarone. No incidence of TdP with amiodarone.

Hohnloser SH, et al. Ann Intern Med. 1994;121(7):529-535.


Amiodarone and QTc Prolongation Cont'd

QT Prolongation & Electrolytes Management

Electrolyte Abnormalities and Repletion Goals		
Hypokalemia	K = 4.0-5.0 mEq/L	
Hypomagnesemia	Mg = 2.0-2.4 mg/dL	
Hypocalcemia	Ca = 8.5-10.2 mg/dL	

Potassium Disturbances and Adverse Cardiac Events

Independent Predictors	OR (95% CI)	P-Value
Potassium <3.6 mEq/L	10.6 (2.54–43.9)	<0.0001
Atrial fibrillation/flutter	6.25 (2.13–18.3)	<0.0001
QTc >480 ms	4.38 (1.19–16.1)	0.01
Coronary artery disease	2.59 (1.06–6.34)	2.59 (1.06–6.34)

Hypokalemia is one of the strongest predictors of QT prolongation, TdP, and sudden cardiac death

Maintain K+ between 4.0-5.0 mEq/L

Other Electrolyte Abnormalities

Hypomagnesemia

- Increased rates of cardiovascular events with hypomagnesemia
- Guideline recommendations for magnesium levels ≥ 2.0 mg/dL

Hypocalcemia

- Hypocalcemia as an independent risk factor for QT prolongation
- Guideline recommendations only include maintaining calcium within normal ranges

Tools for Risk Stratification

Risk Factors for QTc Prolongation

Development and validation of a risk score to predict QT interval prolongation in hospitalized patients

DESIGN

Prospective, observational study of 900 consecutive patients at Indiana University Health Methodist Hospital from 2008-2009

Univariate analysis of variables associated with QTc interval prolongation

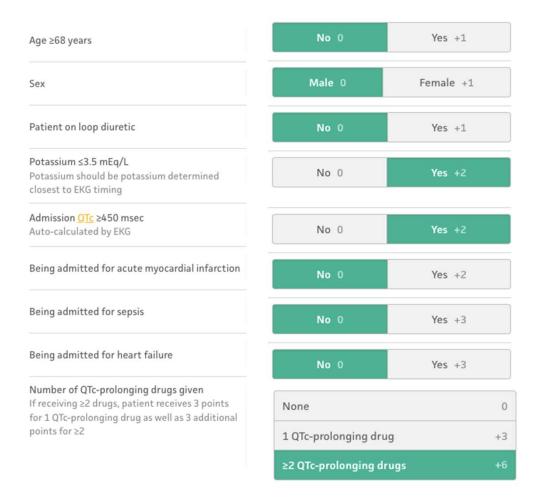
Sensitivity/specificity analysis of risk scoring system developed from univariate analysis

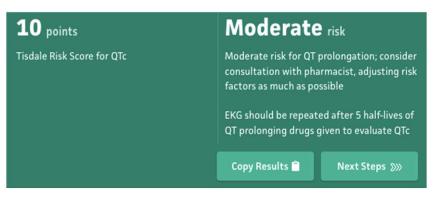
<u>Inclusion</u>

Age ≥ 18 y/o
Admission to the
cardiac critical care
unit (CCCU)

Exclusion

Discharged from the unit in <24h
Did not receive daily EKGs or
continuous telemetry
Completely paced ventricular
rhythms


OUTCOMES


/			
Variables	Points Assigned in Risk Score	Odds Ratio	95% CI (P value)
Age ≥68 years	1	1.3	1.0-1.9 (0.04)
Female Sex	1	1.5	1.1-2.0 (0.03)
Loop Diuretic	1	1.4	1.0-2.0 (0.007)
Serum K+ < 3.5 mEq/L	2	2.1	1.5-2.9 (<0.001)
Admission QTc ≥450*	2	2.3	1.6-3.2 (<0.001)
Acute MI	2	2.4	1.6-3.9 (<0.001)
On 1 QT-prolonging drug	3	2.8	2.0-4.0 (<0.001)
On ≥2 QT-prolonging drugs	3	2.6	1.9-5.6 (0.02)
Sepsis	3	2.7	1.5-4.8 (0.002)
Heart Failure	3	2.7	1.6-5.0 (<0.001)

*Later replaced with QTc Fridericia > 500 as 4 points

Tisdale JE, et al. Circ Cardiovasc Qual Outcomes. 2013;6(4):479-487

CF'S Risk Stratification

Name	QTC
QTc Bazett	528
QTc Fridericia	477
QTc Framingham	460
QTc Hodges	478
QTc Rautaharju	498

Summary: What to Consider as Pharmacists

Assess the EKG

Is the JT interval calculated for patients with ventricular conduction abnormalities?

Has an appropriate formula been used to correct for patient's heart rate (NSR vs. Afib w/RVR)?

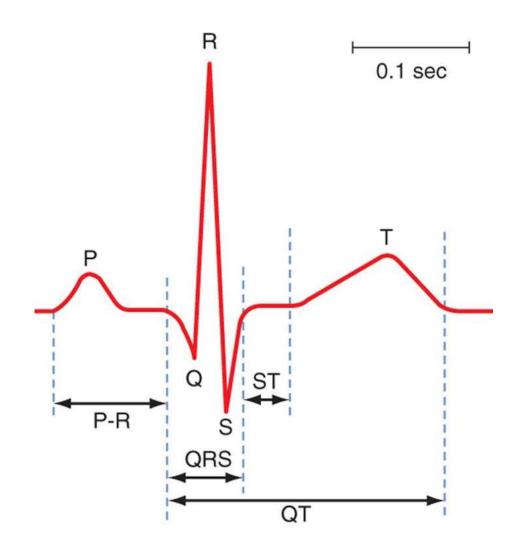
Assess the Prescribed Medications

How many QT prolonging medications does the patient have?

Are there any specific recommendations for QT monitoring/risks for the prescribed medications?

What are the PK/PD drug interactions?

Assess the Risk Factors


Does the patient have a history of cardiovascular disease?

Is the patient a good candidate for a risk score evaluation?

Does the patient have any modifiable risk factors?

Take it to Heart with the QT:
A Prolonged
Understanding of QTc Management

Sally Falahat, PharmD, MPH, BCPS Internal Medicine Clinical Specialist Clinical Assistant Professor UIC Retzky College of Pharmacy

