SUPER BUGS! HOW TO TREAT THE WORST OF THE WORST INFECTIOUS PATHOGENS!

Vicky Shah, PharmD, BCPS

Associate Professor of Clinical Sciences

Chair of Service and Clinical Site Relationships

Roosevelt University College of Science, Health and Pharmacy

Disclosures

No financial or other conflicts to disclose

<u>Learning Objectives – Pharmacists</u>

Discuss the importance of appropriate antibiotic use to prevent multi-drug resistant pathogens

Review culture & sensitivity reports

Describe appropriate treatment regimens for KPC, CRE, ESBL, etc.

Identify the coverage spectrum of newer antibiotic agents which can be utilized for multi-drug resistant pathogens

<u>Learning Objectives – Technicians</u>

Discuss the importance of appropriate antibiotic use to prevent multi-drug resistant pathogens

Recognize new antibiotic agents being used

Which of the following combinations is the appropriate treatment for NMD-1 Carbapenemase-Producing Enterobacteriaceae? SELECT ALL THAT APPLY

- a. Piperacillin/Tazobactam
- b. Tigecycline + Amikacin + Colistin
- c. Amoxicillin/Clavulanic Acid
- d. Vancomycin
- e. Ceftolozane/Tazobactam

Which of the following is the first line treatment for ESBL E. Coli infections?

- a. Carbapenems
- b.Fosfomycin
- c.Piperacillin/Tazobactam
- d.Amoxicillin/Clavulanic Acid

Which of the following is considered first line treatment for hospital acquired MRSA infections?

- a.Daptomycin
- b.Linezolid
- c.Clindamycin
- d. Vancomycin

Which of the following medications can be used for clostridium difficile infections?

- a.IV Vancomycin
- b.Oral Vancomycin
- c.IV Zosyn
- d.Oral Augmentin

<u>Infection</u>

Invasion of an organism's body tissues by disease-causing agents, their multiplication, and the reaction of host tissues to these organisms/toxins.

Caused by viruses, prions, bacteria, parasites, fungi, ticks, mites, insects, etc.

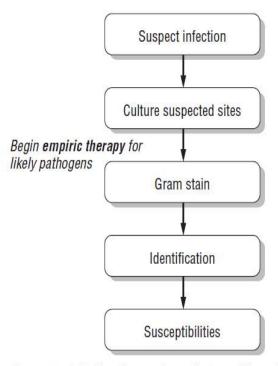
The host's immune system will usually provide protection against invasive organisms, which may lead to biological changes within the body (i.e. temperature increase, increased WBC, etc.)

HOW CAN INFECTIONS BE TRANSMITTED FROM PERSON TO PERSON?

WHAT ARE SOME THINGS THAT CAN BE DONE TO PREVENT THE SPREAD OF INFECTION?

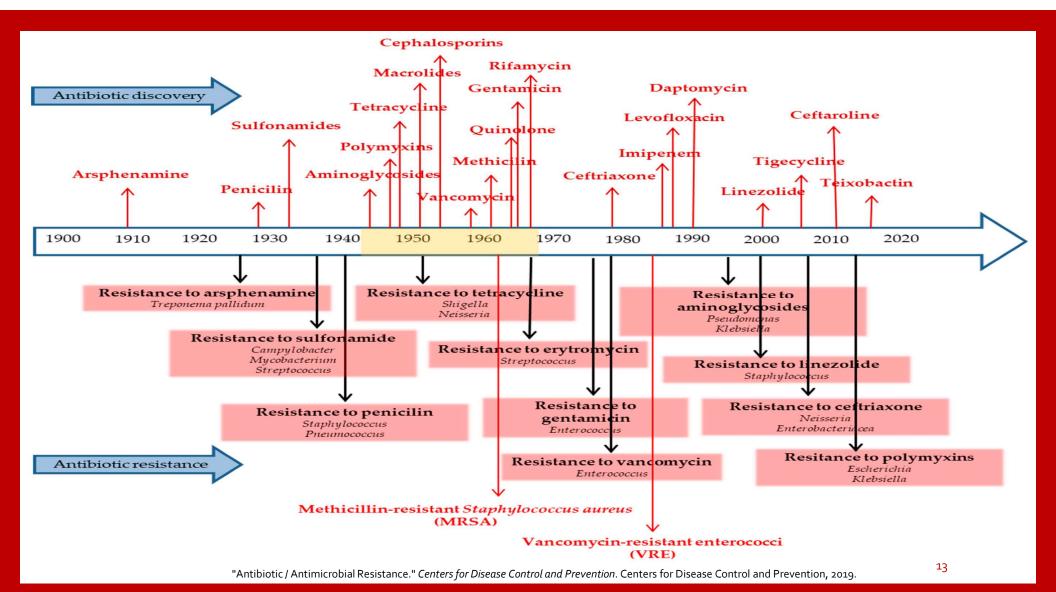
Definitions

Empiric Therapy


Infecting organism(s) not yet identified

More "broad spectrum"

Definitive Therapy


Organism(s) identified and specific therapy chosen

More "narrow" spectrum

Change to definitive therapy for patient-specific pathogens

Spellberg B, Guidos R, Gilbert D, et al. Infectious Diseases Society of A. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 2008;46:155–64.

Estimated minimum number of illnesses and deaths caused by antibiotic resistance*:

At least **# 2,049,442** illnesses, **2,049,442** illnesses,

*bacteria and fungus included in this report

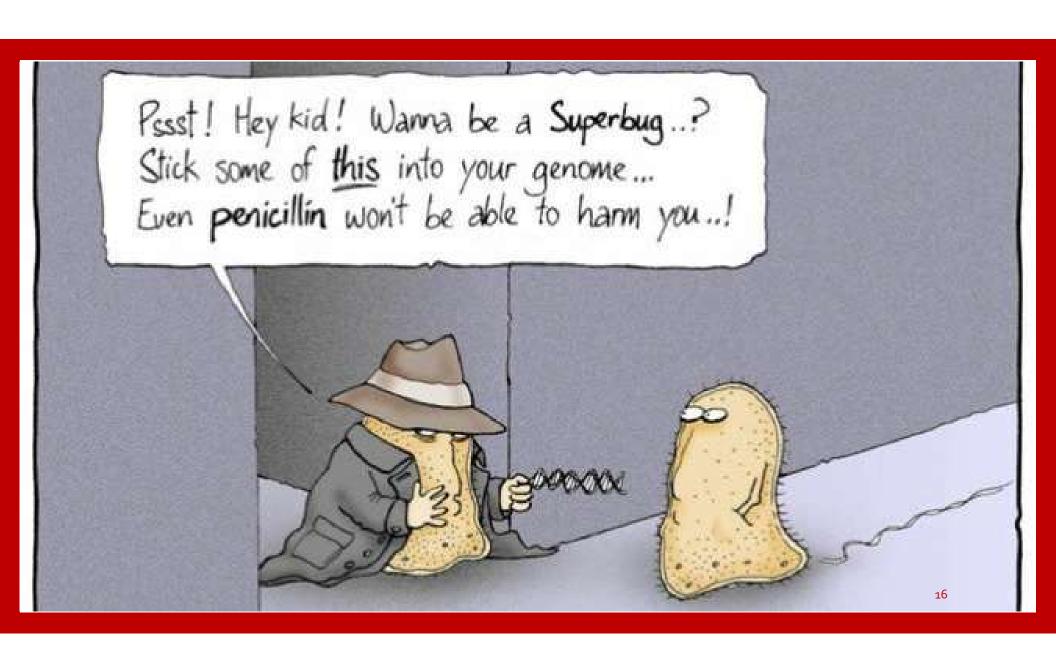
Estimated minimum number of illnesses and death due to Clostridium difficile (C. difficile), a unique bacterial infection that, although not significantly resistant to the drugs used to treat it, is directly related to antibiotic use and resistance:

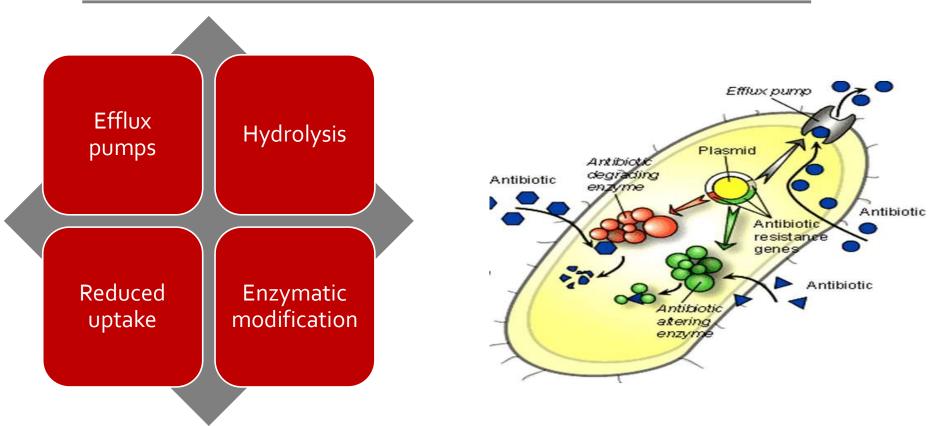
At least #250,000 illnesses, 214_NNN deaths

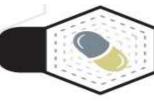
How Antibiotic Resistance Happens

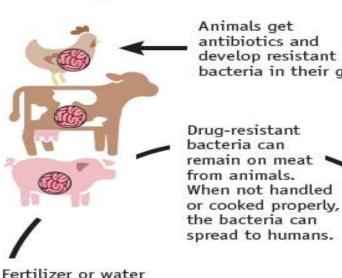
Lots of germs.

A few are drug resistant.


Antibiotics kill
bacteria causing the illness,
as well as good bacteria
protecting the body from
infection.


The drug-resistant bacteria are now allowed to grow and take over.


Some bacteria give their drug-resistance to other bacteria, causing more problems.



Mechanisms of Antibiotic Resistance

Examples of How Antibiotic Resistance Spreads

containing animal feces

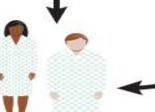
is used on food crops.

and drug-resistant bacteria

Animals get antibiotics and develop resistant bacteria in their guts.

bacteria can

George gets antibiotics and develops resistant bacteria in his gut.


George stays at home and in the general community. Spreads resistant bacteria.

George gets care at a hospital, nursing home or other inpatient care facility.

Resistant germs spread directly to other patients or indirectly on unclean hands

Healthcare Facility

Patients go home.

of healthcare providers.

Resistant bacteria spread to other patients from surfaces within the healthcare facility.

18

eaten. These bacteria Vegetable Farm can remain in the

Drug-resistant bacteria

in the animal feces can

remain on crops and be

human gut.

"Antibiotic / Antimicrobial Resistance." Centers for Disease Control and Prevention. Centers for Disease Control and Prevention, o6 Apr. 2017. Web. 13 July 2017.

Pharmacist's Role

Education!

- Only use when antibiotics are prescribed by physician
- Always take full prescription even if patient feels better
 - Never use left over antibiotics
 - Never share antibiotics

Appropriate Antimicrobial Stewardship

- Assist physicians in selecting appropriate antibiotics
 - Avoid antibiotics for viral/fungal infections

Avoid inappropriate use of antibiotics

- Recommend narrow spectrum antibiotics after cultures are completed
 - Avoid duplicate coverage unless needed
 - Utilize hospital specific antibiograms

Susceptibility Testing

MIC = minimum inhibitory concentration

Minimum concentration required to stop bacterial growth

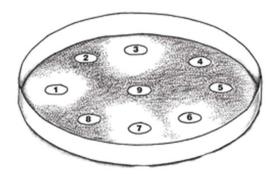
Breakpoint = MIC cutoff for susceptibility

- MIC below breakpoint → susceptible
 - MIC above breakpoint → resistant
- Determined by CLSI or EUCAST based on in vitro testing and physiologically achievable concentrations at usual doses

Susceptibility Report

S = susceptible

• Reasonable to expect efficacy


I = intermediate

- Activity likely insufficient
- In some cases may have some efficacy at maximum doses
- "Susceptible-dose dependent" (S-DD)

R = resistant

- No clinically useful activity
- In multidrug resistant organisms, may still have a role for synergy

Cultures

With antibacterials 1, 3, 6 & 7, the bacteria show a sensitivity to an antibiotic. The bacteria are resistant to medications 2, 4, 5, 8 & 9.

Examples of Antibiotic Susceptibility Breakpoints

Organism Antibiotics	Susceptible	Intermediate	Resistant
E. coli			
Cefepime	≤ 8 mcg/ml	16 mcg/ml	≥ 32 mcg/ml
Levofloxacin	$\leq 2 \text{ mcg/ml}$	4 mcg/ml	≥ 8 mcg/ml
Trimethoprim/ sulfamethoxazole	≤ 2/38 mcg/ml	-	≥ 4/76 mcg/ml
Streptococcus pneumoniae			
Cefepime (meningitis)	≤ 0.5 mcg/ml	1 mcg/ml	≥ 2 mcg/ml
(Non-meningeal)	≤ 1 mcg/ml	2 mcg/ml	≥ 4 mcg/ml
Levofloxacin	$\leq 2 \text{ mcg/ml}$	4 mcg/ml	≥ 8 mcg/ml
Trimethoprim/ sulfamethoxazole	$\leq 0.5/9.5 \text{ mcg/ml}$	1-2/19-38 mcg/ml	≥ 4/76 mcg/ml

DRUG	MIC	INTERPRETATION
Amikacin	<=2	S
Ampicillin	>=32	R
AmpSulbactam	4	s
Aztreonam	4	s
Cefazolin	>=64	R
Cefepime	2	s
Ceftriaxone	32	R
Ciprofloxacin	>=4	R
Ertapenem	<=0.5	s
Gentamicin	<=1	s
Meropenem	<=0.25	s
Nitrofurantoin	<=16	s
PiperTazobactam	<=4	s
Tobramycin	<=1	s
TrimethSulfa	<=20	S

<u>Assessment</u>

Drug	MIC	Breakpoint	Interpretation
Amikacin	2	4	
Ampicillin	32	16	
Aztreonam	4	2	

<u>Assessment</u>

Drug	MIC	Breakpoint	Interpretation
Amikacin	2	4	S
Ampicillin	32	16	R
Aztreonam	4	2	R

SUPER BUGS!

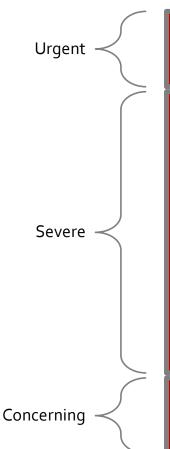
ESKAPE/ESCAPE

Enterococcus faecium
S

Staphylococcus aureus

K Or C

Klebsiella pneumoniae
Clostridium difficile


A

Acinetobacter spp

Pseudomonas aeruginosa
Enterobacter spp

• Enterbacteriaceae

Big Threats

- Clostridium difficile (Cdiff)
- Carbapenem-Resistant Enterobacteriaceae (CRE)
- Neisseria gonorrhoeae
- Multidrug-Resistant Acinetobacter
- Drug-Resistant Campylobacter
- Fluconazole-Resistant Candida
- Extended Spectrum Enterobacteriaceae (ESBL)
- Vancomycin-Resistant Enterococcus (VRE)
- Multidrug-Resistant Pseudomonas Aeruginosa
- Drug-Resistant Non-Typhoidal Salmonella
- Drug-Resistant Salmonella Serotype Typhi
- Drug-Resistant Shigella
- Methicillin-Resistant Staphylococcus Aureus (MRSA)
- Drug-Resistant Streptococcus Pneumoniae
- Drug-Resistant Tuberculosis
- Vancomycin-Resistant Staphylococcus Aureus (VRSA)
- Erythromycin-Resistant Group A Streptococcus
- Clindamycin-Resistant Group B Streptococcus

[&]quot;Big Threats." Big Threats - CDC. Centers for Disease Control and Prevention, n.d. Web.

	Threat	Change in Rates or Number of Infections***			
	Inreat	2020 vs. 2019	2021 vs. 2020	2022 vs. 2021	2022 vs. 2019
*	Hospital-onset CRE	Increase	Increase	Stable	Increase
RGEN	Hospital-onset Carbapenem- resistant <i>Acinetobacter</i>	Stable	Stable	Stable	Increase**
5	Clinical Cases of <i>C. auris</i>	Increase	Increase	Increase	Increase
	Hospital-onset MRSA	Increase	Stable	Decrease	Stable
*SOC	Hospital-onset VRE	Increase	Increase	Stable	Increase
SERIC	Hospital-onset ESBL- producing Enterobacterales	Increase	Stable	Stable	Increase
•	Hospital-onset MDR Pseudomonas aeruginosa	Increase	Increase	Stable	Increase

"Big Threats." Big Threats - CDC. Centers for Disease Control and Prevention, n.d. Web.

SUPER BUGS!

Urgent

- Clostridium difficile (Cdiff)
- Carbapenem-Resistant Enterobacteriaceae(CRE)
- Neisseria gonorrhoeae

Severe

- Extended Spectrum Beta-Lactamases (ESBL)
- Vancomycin-Resistant Enterococcus (VRE)
- Methicillin-Resistant Staphylococcus Aureus (MRSA)

29

CLOSEYOUR EYES

Peggy Lillis

Clostridium Difficile

One of the leading causes of morbidity and mortality in the hospital

Resistance is not an issue but overuse of antibiotics has led to an increase incidence of Cdiff infections

Abou Chakra CN, McGeer A, Labbe AC, et al. Factors associated with complications of Clostridium difficile infection in a multicenter prospective cohort. Clin Infect Dis. 2015;61(13):1781-1788.

WHAT ANTIBIOTIC HAS THE HIGHEST RISK FOR CAUSING CDFIFF INFECTIONS?

Antibiotic Related Risk

High Risk	Medium Risk	Low Risk
Cephalosporins	Macrolides	Aminoglycosides
Clindamycin	Tetracyclines	Metronidazole
Ampicillin/Amoxicillin		Anti-pseudomonal Penicillin
Fluoroquinolones		Rifampin
		Vancomycin

Abou Chakra CN, McGeer A, Labbe AC, et al. Factors associated with complications of Clostridium difficile infection in a multicenter prospective cohort. Clin Infect Dis. 2015;61(134:1781-1788.

Clostridium difficile

Mechanism of Infection:

- · Gram-positive, spore-forming anaerobic bacillus
- Produces two major toxins: Toxin A (TcdA) and Toxin B (TcdB)
- Toxins cause inflammation, mucosal damage, and fluid secretion in the colon

Pathogenesis Steps:

- Disruption of gut microbiota (due to antibiotic use)
- Colonization of C. difficile spores in the gut
- Toxin production leads to colitis and diarrhea

Severe cases may progress to **pseudomembranous colitis**, **toxic megacolon**, **or sepsis**

Clostridium difficile Resistance

Hypervirulent & Common Strains

- 1.NAP1/BI/027: Highly virulent, produces 16-23x more toxin A & B
- Fluoroquinolone-resistant
- Associated with severe disease, outbreaks, and higher mortality

NAP₂/₀₇8 Strain

- Found in livestock (pigs, cattle)
- Can cause severe community-acquired CDI

NAP4/017 Strain

- Lacks Toxin A but still highly pathogenic
- Fluoroquinolone resistance reported

Patients infected with NAP1 strain have:

- More severe colitis, higher recurrence rates, increased ICU admissions
- Higher mortality risk compared to other strains
- More resistant ciprofloxacin, levofloxacin

Treatment

Initial CDI Episode:

- Preferred: Fidaxomicin 200 mg BID x 10 days
- Alternative: PO Vancomycin 125 mg QID x 10 days
- If above unavailable (non-severe cases): Metronidazole 500 mg TID x 10-14 days

First Recurrence:

- Preferred: Fidaxomicin 200 mg BID x 10 days or BID x 5 days then QOD x 20 days
- Alternative: PO Vancomycin in tapered/pulsed regimen

Fulminant CDI:

- Vancomycin 500 mg QID orally or NG tube
- Consider rectal vancomycin if ileus is present
- IV metronidazole 500 mg q8h with vancomycin

Multiple Recurrences:

- Fidaxomicin (standard or extended-pulsed)
- PO Vancomycin tapered and pulsed regimen
- PO Vancomycin x 10 days followed by rifaximin
- Fecal Microbiota Transplantation (FMT)
- Adjunctive: Bezlotoxumab IV once discontinued effective January 31, 2025

Treatment Resistance/Recurrence

Bezlotoxumab (Monoclonal Antibody to Toxin B):

- Reduces recurrence in high-risk patients
- Use in patients with prior CDI episode in last 6 months

FMT (Fecal Microbiota Transplantation):

- For multiple CDI recurrences after standard treatments fail
 - FDA warning: Risk of transmission of pathogens

Rifaximin:

- Used after vancomycin for 20 days to prevent recurrence
- Limited data, but promising in some recurrent CDI cases

CLOSEYOUR EYES

David Ricci

CRE Vs. CPE

Carbapenem-Resistant Enterobacteriaceae (CRE)

Carbapenemase-Producing Enterobacteriaceae (CPE)

A bacterium that is a member of the enterobacteriaceae family resistant to the carbapenem class of antibiotics by any means

A bacterium that is a member of the enterobacteriaceae family resistant to the carbapenem class of antibiotics through the production of a carbapenemase

Humphries RM, Yang S, Hemarajata P, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing *Klebsiella pneumoniae* isolate. *Antimicrob Agents Chemother*. 2015;59(10):6605-6607. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK:a molecular, biological, and epidemiological study. *Lancet Infect Dis*. 2010;10(9):597-602.

Types of Carbapenemases

Klebsiella-Producing Carbapenemases (KPC)

Inhibit all beta-lactams

New Delhi Metallo-Beta Lactamases (NMD-1)

- Inhibit all beta-lactams
- Susceptible to Aztreonam

Verona Integron Encoded Metallobetalacamase (VIM)

Inhibit all beta-lactams

Oxacillin Hydrolyzing (OXA)

• Inhibit all beta-lactams but weak inhibition against carbapenems

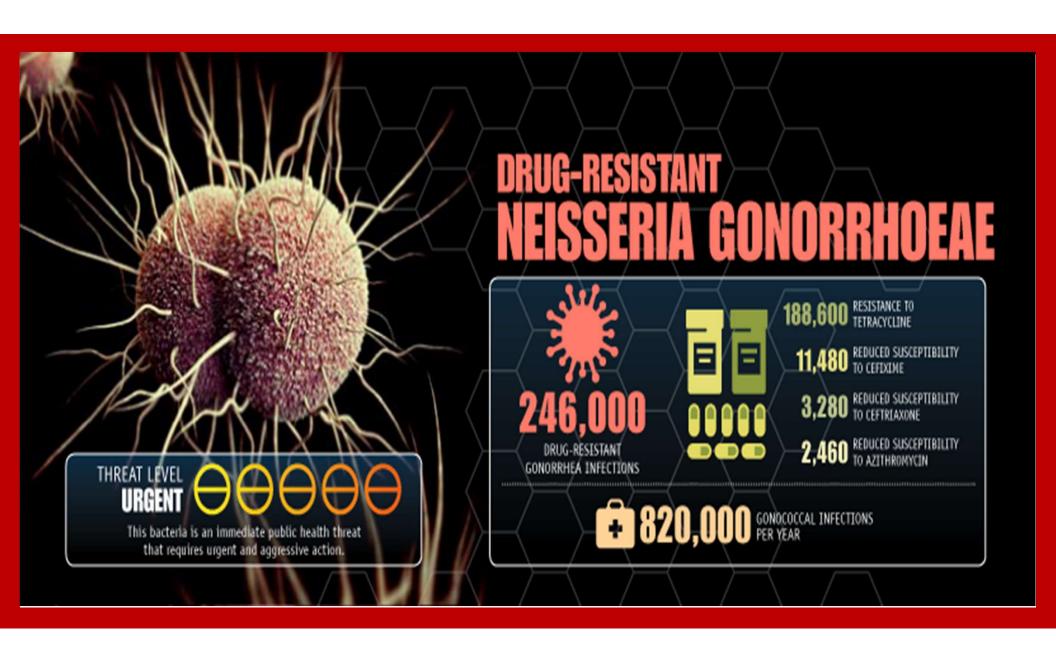
Humphries RM, Yang S, Hemarajata P, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing *Klebsiella pneumoniae* isolate. *Antimicrob Agents Chemother*. 2015;59(10):6605-6607. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK:a molecular, biological, and epidemiological study. *Lancet Infect Dis*. 2010;10(9):597-602.

Carbapenemase-Producing Enterobacteriaceae Treatments

Tigecycline + Polymyxins + Aminoglycosides

• Tigecycline has limited efficacy and numerous adverse effects

Ceftolozane-Tazobactam (Zerbaxa)


Ceftazidime-Avibactam (Avycaz)

• No activity against NDM-1 and VIM

Imipenem/Cilastatin + Relebactam (Recarbrio)

Humphries RM, Yang S, Hemarajata P, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing *Klebsiella pneumoniae* isolate. *Antimicrob Agents Chemother*. 2015;59(10):6605-6607. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK:a molecular, biological, and epidemiological study. *Lancet Infect Dis*. 2010;10(9):597-602.

Second most reported sexually transmitted infection

Increased resistance to Azithromycin,
Fluoroquinolones and oral Cefixime has created
massive crisis

Resistance to Ceftriaxone has also been noted

Pathogen – Neisseria gonorrhoeae

Gram Negative Diplococci

Common sites of infections

• Cervix, urethra, rectum, pharynx, conjunctiva

Common co-infection – Chlamydia trachomatis

• Routine treatment covers both N. gonorrhoeae & C. trachomatis

Neisseria Gonorrhoeae – Treatment

Preferred Treatment:

- Ceftriaxone 500mg IM x 1 PLUS doxycycline 100mg PO daily x 7 days (if *Chlamydia trachomatis* infection is not excluded)
 - In patients ≥150 kg, ceftriaxone dose should be 1 gram

Alternative Treatments (FYI):

- Cefixime 800mg PO x 1
- Gentamicin 24omg IM plus 2 grams PO azithromycin
- Fluoroquinolones no longer recommended due to resistance

Susceptibility testing is recommended for all individuals for who Azithromycin + Ceftriaxone is not effective

Treatments in the Pipeline!

- Solithromycin Completed Phase III Clinical Trial
 - Zoliflodacin Currently in Phase II
 - Gepotidacin Currently in Phase II

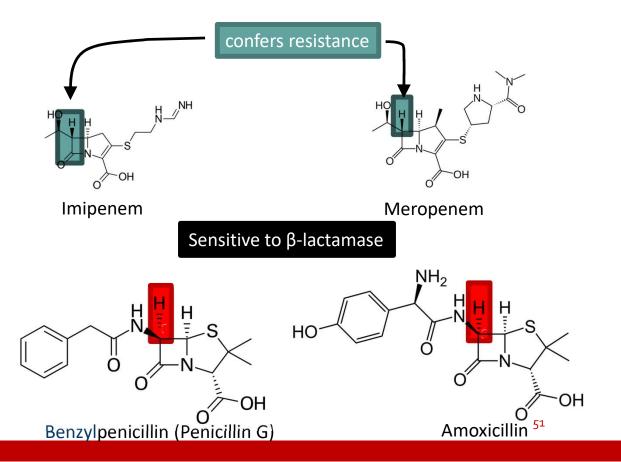
CDC (14 July 2014). "Gonorrhea - CDC Fact Sheet". Retrieved 17 October 2014.

Putnam, Shannon D.; Sader, Helio S.; Farrell, David J.; Biedenbach, Douglas J.; Castanheira, Mariana (2011). "Antimicrobial characterisation of solithromycin (CEM-101), a novel fluoroketolide: activity against staphylococci and enterococci". International Journal of Antimicrobial Agents. 37 (1): 39–45. PMID 21075602. doi:10.1016/j.ijantimicag.2010.08.021

Extended Spectrum Beta-Lactamase (ESBL)

Nearly 900 different β-lactamases have been found (penicillinases, cephalosporinases, etc.)

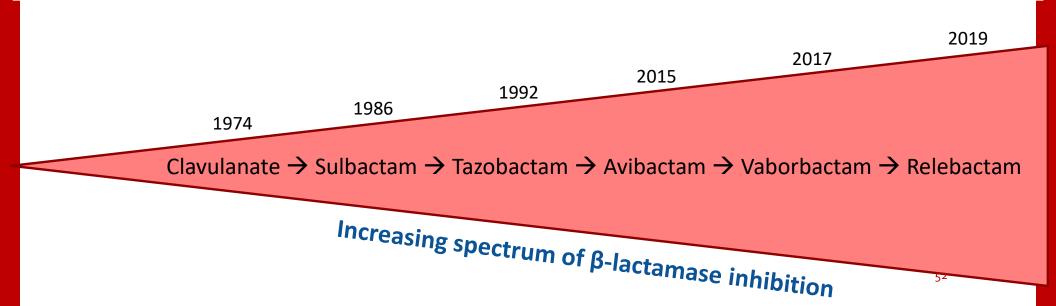
Some β -lactam antibiotics are resistant to some β -lactamases, but sensitive to others


- Staphylococcus aureus, Haemophilus influenza, and Escherichia coli possess β-lactamases that prefer **penicillins**, but not **cephalosporins**
- Psuedomonas aeruginosa and Enterobacter species destroy penicillins and cephalosporins
- Penicillinases and cephalosporinases do not destroy **carbapenems**, but carbapenemases and metallo-β-lactamases exist that do destroy **carbapenems**

Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2020/

<u>Beta Lactamases – Carbapenems</u>

Carbapenems are more β-lactamase-resistant than other drugs


Resistance is conferred by the different stereochemistry in the β-lactam ring

Beta Lactamase Inhibitors

Not all β-lactamase inhibitors are created equally

In general, the newer ones have greater spectra of activity, but older ones are still in use to stabilize drugs against certain bacteria β-lactamase inhibitors cannot be mixed with any random β-lactam drug, but are instead combined with drugs that are sensitive to the β-lactamase that the inhibitor targets

Extended Spectrum Beta-Lactamase (ESBL)

Carbapenems

Fosfomycin

Ceftolozane/ Tazobactam (Zerbaxa) Ceftazidime/Avibactam (Avycaz)

Meropenem/ Vaborbactam (Vabomere)

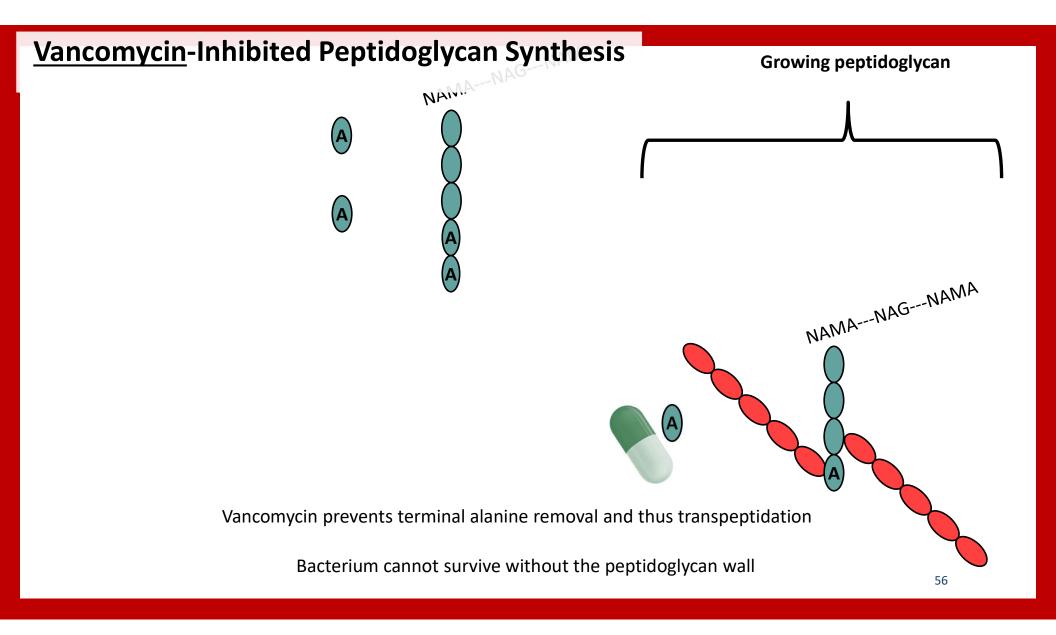
Tigecycline

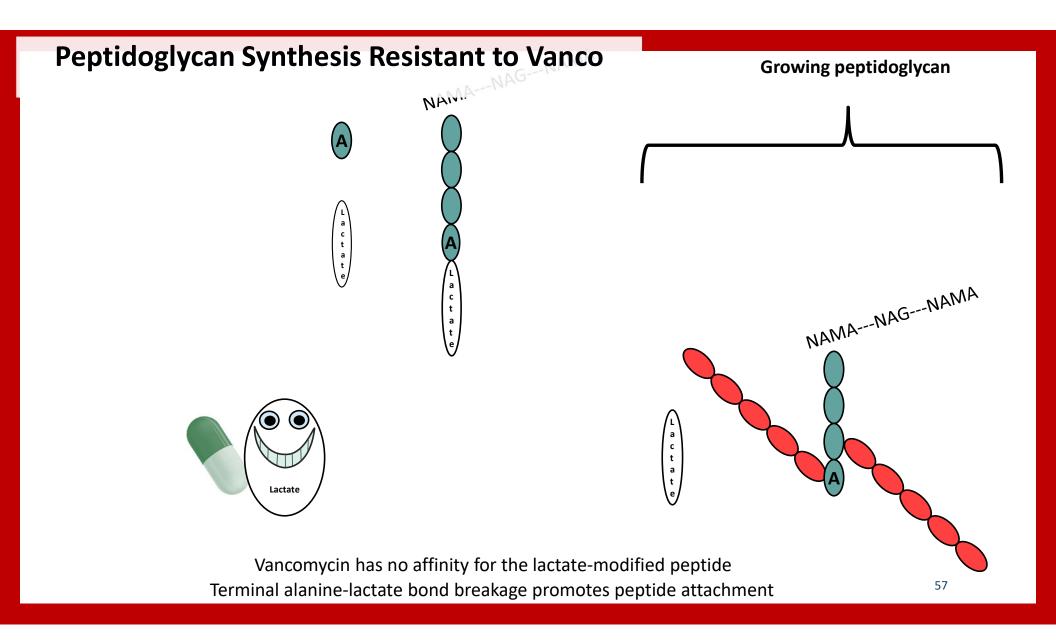
Imipenem/Cilastatin/ Relebactam (Recarbrio) Omadacycline/ Evaracycline

Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2020/.

Vancomycin – Concerns for Resistance

Vancomycin Resistant Enterococcus (VRE) Vancomycin Intermediate Staph aureus (VISA)


Vancomycin Resistant Staph aureus (VRSA)


Resistance to Vancomycin

Enterococci and Staph. Aureus can resist vancomycin by a simple trick

They replace the terminal D-alanine with a D-lactate or D-serine, which prevents vancomycin from binding altogether

Lactate is not even an amino acid, highlighting the fact that resistancegenerating bacterial evolution is extremely flexible, and perhaps unpredictable with respect to mechanism

Vancomycin-Resistant Enterococcus (VRE)

NON-VRE

- Ampicillin/Sulbactam
- Vancomycin
- Piperacillin/Tazobactam
- Penicillin
- Quinupristin/Dalfopristin

VRE

- E. faecalis
 - Penicillin G
 - Ampicillin
 - Linezolid
 - Daptomycin
 - Tigecycline
 - Nitrofurantoin
 - Fosfomycin
 - Doxycycline

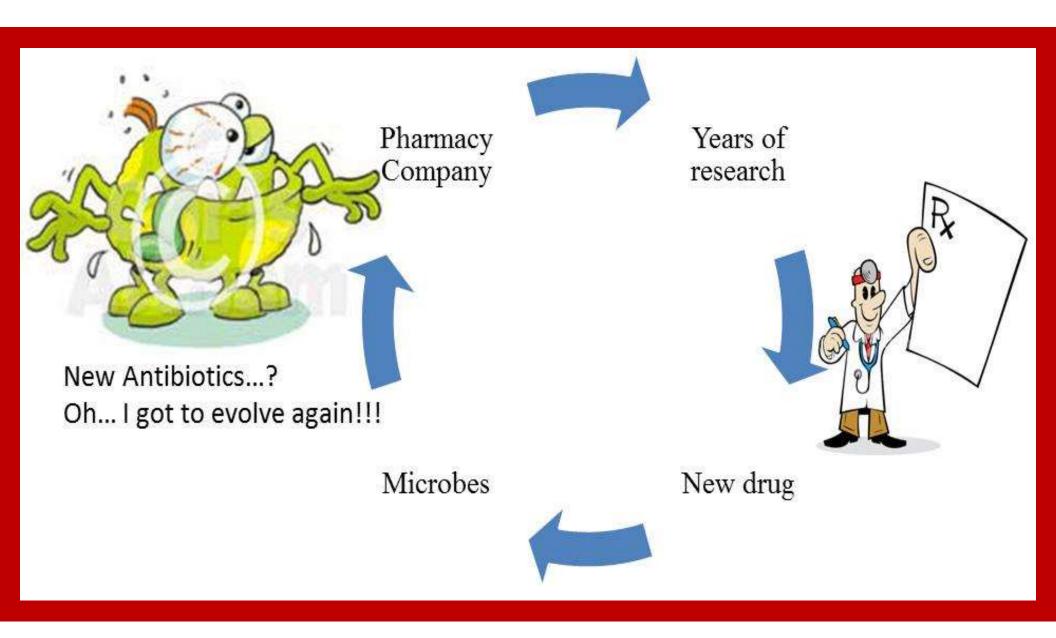
- E. faecium
 - Daptomycin
 - Linezolid
 - Tigecycline
 - Quinupristin/Dalf opristin
 - Nitrofurantoin
 - Fosfomycin
 - Doxycycline

Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/. Accessed January 12, 2016.

CLOSEYOUR EYES

Ricky Lannetti

Methicillin-Resistant Staphylococcus Aureus (MRSA)


Hospital Acquired

- Vancomycin
- Daptomycin
- Linezolid/Tedizolid
- Ceftaroline
- Telavancin
- Dalbavancin/Oritavancin
- Tigecycline
- Quinupristin/Dalfopristin

Community Acquired

- Sulfamethoxazole/Trimethoprim
- Doxycycline/Minocycline
- Clindamycin
- Linezolid/Tedizolid
- Moxifloxacin

Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/. Accessed January 12, 2016.

Resources for Pharmacists

https://www.cdc.gov/

http://www.who.int/en/

Which of the following combinations is the appropriate treatment for NMD-1 Carbapenemase-Producing Enterobacteriaceae? SELECT ALL THAT APPLY

- a. Piperacillin/Tazobactam
- b. Tigecycline + Amikacin + Colistin
- c. Amoxicillin/Clavulanic Acid
- d. Vancomycin
- e. Ceftolozane/Tazobactam

Which of the following is the first line treatment for ESBL E. Coli infections?

- a. Carbapenems
- b.Fosfomycin
- c.Piperacillin/Tazobactam
- d.Amoxicillin/Clavulanic Acid

Which of the following is considered first line treatment for hospital acquired MRSA infections?

- a.Daptomycin
- b.Linezolid
- c.Clindamycin
- d. Vancomycin

Which of the following medications can be used for clostridium difficile infections?

- a.IV Vancomycin
- b.Oral Vancomycin
- c.IV Zosyn
- d.Oral Augmentin

QUESTIONS?

Vicky Shah, PharmD, BCPS
Associate Professor of Clinical Sciences
Chair of Service and Clinical Site Relationships
vshahoo@roosevelt.edu